Building a Better Jump

J. Kyle Pittman @PirateHearts
 Co-founder, Minor Key Games

GOC

Hi

- I'm Kyle
- Hi Kyle

2007-2013

NEON STRUCT Die Augen der Welt
[10 ONO ETLI

 chichad

2013-20XX

Motivation

- Avoid hardcoding, guessing games
- Design jump trajectory on paper
- Derive constants to model jump in code

Motivation

- Has this ever happened to you?

- There's GOT to be a better way!!

Assumptions

- Model player as a simple projectile
- Game state
- Position, velocity integrated on a timestep
- Acceleration from gravity
- No air friction / drag

Gravity

- Single external force
- Constant acceleration over time

Integration

- Integrate over time to find velocity

$$
\begin{aligned}
& \int g d t= \\
& g t+v_{0}
\end{aligned}
$$

Integration

- Integrate over time again to find position

$$
\begin{aligned}
& \int g t+v_{0} d t= \\
& \frac{1}{2} g t^{2}+v_{0} t+p_{0}
\end{aligned}
$$

Projectile motion

$$
f(t)=\frac{1}{2} g t^{2}+v_{0} t+p_{0}
$$

- Textbox Physics 101 projectile motion
- Understand how we got there

Parabolas

- Algebraic definition
- $f(x)=a x^{2}+b x+c$
- Substituting

$$
\begin{array}{ll}
x \rightarrow t & b \rightarrow v_{0} \\
a \rightarrow \frac{1}{o} & c \rightarrow n
\end{array} \quad f(t)=\frac{1}{2} g t^{2}+v_{0} t+p_{0}
$$

GDC

Properties of parabolas

- Symmetric

GOC

Properties of parabolas

- Geometric self-similarity

Properties of parabolas

- Shaped by quadratic coefficient $a \rightarrow \frac{1}{2} g$

GDC

Design on paper

Design on paper

Maths

- Derive values for gravity and initial velocity in terms of peak height and duration to peak

$$
f(t)=1 / 2 g t^{2}+v_{0} t+p_{0}
$$

Initial velocity

$$
\begin{aligned}
& f^{\prime}(t)=g t+v_{0} \\
& f^{\prime}\left(t_{h}\right)=0 \\
& 0=g t_{h}+v_{0} \\
& v_{0}=-g t_{h}
\end{aligned}
$$

Gravity

$f(t)=1 / 2 g t^{2}+v_{0} t+p_{0}$

Solve for g :

$$
\begin{aligned}
& f(t)=\frac{1}{2} g t^{2}+v_{0} t+p_{0} \\
& f\left(t_{h}\right)=h \\
& h=\frac{1}{2} g t_{h}{ }^{2}+v_{0} t_{h}+p_{0} \\
& h=\frac{1}{2} g t_{h}{ }^{2}+\left(-g t_{h}\right) t_{h}+0 \\
& h=-\frac{1}{2} g t_{h}{ }^{2} \\
& g=\frac{-2 h}{t_{h}{ }^{2}}
\end{aligned}
$$

Back to init. vel.

Solve for v_{0} :

$$
\begin{aligned}
& v_{0}=-g t_{h} \\
& g=\frac{-2 h}{t_{h}^{2}} \\
& v_{0}=-\left(\frac{-2 h}{t_{h}^{2}}\right) t_{h} \\
& v_{0}=\frac{2 h}{t_{h}}
\end{aligned}
$$

GDC

Review

$$
\begin{gathered}
v_{0}=\frac{2 h}{t_{h}} \\
g=\frac{-2 h}{t_{h}^{2}}
\end{gathered}
$$

Time \rightarrow space

- Design with x-axis as distance in space
- Introduce lateral (foot) speed
- Keep horizontal and vertical velocity components separate

GOC

Parameters

Time \rightarrow space

Time \rightarrow space

Maths

- Rewrite gravity and initial velocity in terms of foot speed and lateral distance to peak of jump

GDC

$$
\begin{array}{lll}
\text { Maths } & v_{0}=\frac{2 h}{t_{h}} & g=\frac{-2 h}{t_{h}^{2}} \\
t_{h}=\frac{x_{h}}{v_{x}} & v_{0}=\frac{2 h v_{x}}{x_{h}} & g=\frac{-2 h v_{x}^{2}}{x_{h}^{2}}
\end{array}
$$

GOC

Review

$$
\begin{aligned}
& v_{0}=\frac{2 h v_{x}}{x_{h}} \\
& g=\frac{-2 h v_{x}^{2}}{x_{h}^{2}}
\end{aligned}
$$

Breaking it down

- Real world: Projectiles always follow parabolic trajectories.
- Game world: We can break the rules in interesting ways.
- Break our path into a series of parabolic arcs of different shapes.

Breaks

- Maintain continuity in position and velocity
- Trivial in implementation
- Choose a new gravity to shape our jump

Fast falling

Position

Velocity / Acceleration

GDC

Variable height jumping

Velocity / Acceleration

GOC

Double jumping

GDC
 Integration

- Put our gravity and initial velocity constants to use in practice
- Integrate from a past state to a future state over a time step

GOC

Integration

Euler

- Pseudocode

```
pos += vel * \Deltat
vel += acc * \Deltat
```

- Easy
- Unstable
- We can do better

Runge-Kutta (RK4)

- The "top-shelf" integrator.
- No pseudocode here. :V
- Gaffer on Games: "Integration Basics"
- Too complex for our needs.

GOC

Velocity Verlet

- Pseudocode

$$
\begin{aligned}
& \text { pos }+=\text { vel* } \Delta t+1 / 2 \operatorname{acc} * \Delta t * \Delta t \\
& \text { new_acc }=f(\operatorname{pos}) \\
& \text { vel }+=1 / 2(\operatorname{acc}+\text { new_acc }) * \Delta t \\
& \text { acc }=\text { new_acc }
\end{aligned}
$$

Observations

- Similarity to projectile motion formula
- What if our acceleration were constant?
- We could integrate with 100% accuracy

Assuming constant acceleration

Assuming constant acceleration

- Pseudocode

```
pos += vel*\Deltat + 1/2acc*\Deltat*\Deltat
vel += acc*\Deltat
```

- Trivially simple change from Euler
- 100% accurate as long as our acceleration is constant

Near-constant acceleration

- What if we don't change a thing?
- The error we accumulate when our acceleration does change (versus Velocity Verlet) will be:
- $\Delta \mathrm{acc} * \Delta \mathrm{t} * \Delta \mathrm{t}$
- Acceptable?

The takeaway

- Design jump trajectories as a series of parabolic arcs
- Can author unique game feel
- Trust result to feel grounded in physical truths

Questions?

- In practice: You Have to Win the Game (free game PLAY IT PLAY MY THING)
- The Twitters: @PirateHearts
- http://minorkeygames.com
- http://gunmetalarcadia.com

