GDC

Building a Better Jump

J. Kyle Pittman @PirateHearts Co-founder, Minor Key Games

GAME DEVELOPERS CONFERENCE March 14–18, 2016 · Expo: March 16–18, 2016 #GDC16

GDC[©] GAME DEVELOPERS CONFERENCE[®] March 14–18, 2016 • Expo: March 16–18, 2016 #GDC16

- I'm Kyle
 - Hi Kyle

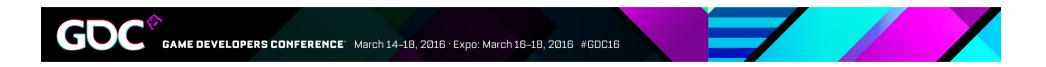
2013-20XX

Eldrítch

2007-2013

Motivation

- Avoid hardcoding, guessing games
- Design jump trajectory on paper
- Derive constants to model jump in code



Motivation

• Has this ever happened to you?

• There's GOT to be a better way!!



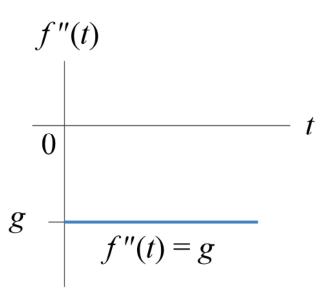
Assumptions

- Model player as a simple projectile
- Game state
 - Position, velocity integrated on a timestep
 - Acceleration from gravity
- No air friction / drag

GAME DEVELOPERS CONFERENCE[®] March 14–18, 2016 • Expo: March 16–18, 2016 #GDC16

Gravity

- Single external force
- Constant acceleration over time

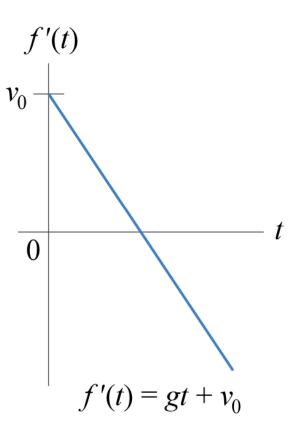


Integration

• Integrate over time to find velocity

$$\int g dt =$$

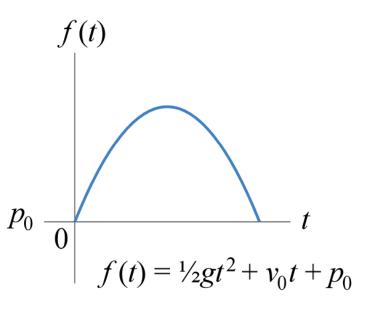
$$gt + v_0$$



Integration

• Integrate over time again to find position

$$\int gt + v_0 \, dt = \frac{1}{2} gt^2 + v_0 t + p_0$$



Projectile motion

$$f(t) = \frac{1}{2}gt^2 + v_0t + p_0$$

- Textbox Physics 101 projectile motion
- Understand how we got there

Parabolas

Algebraic definition

•
$$f(x) = ax^2 + bx + c$$

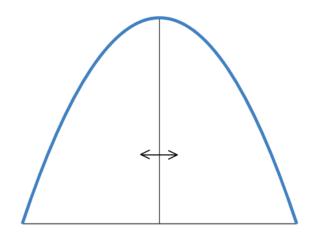
Substituting

$$\begin{array}{ll} x \to t & b \to v_0 \\ a \to \frac{1}{2}g & c \to p_0 \end{array} \qquad f(t) = \frac{1}{2}gt^2 + v_0t + p_0 \end{array}$$

GDC[®] GAME DEVELOPERS CONFERENCE[®] March 14–18, 2016 • Expo: March 16–18, 2016 #GDC16

Properties of parabolas

• Symmetric



GOC GAME DEVELOPERS CONFERENCE March 14-18, 2016 · Expo: March 16-18, 2016 #GDC16

Properties of parabolas

 \longleftrightarrow

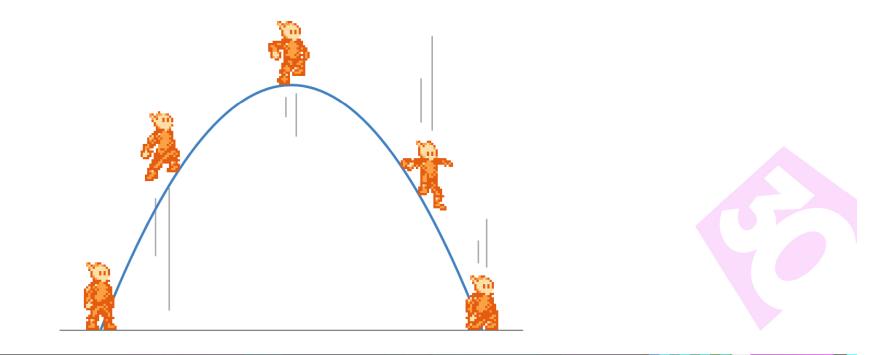
↔ /

• Geometric self-similarity

Properties of parabolas

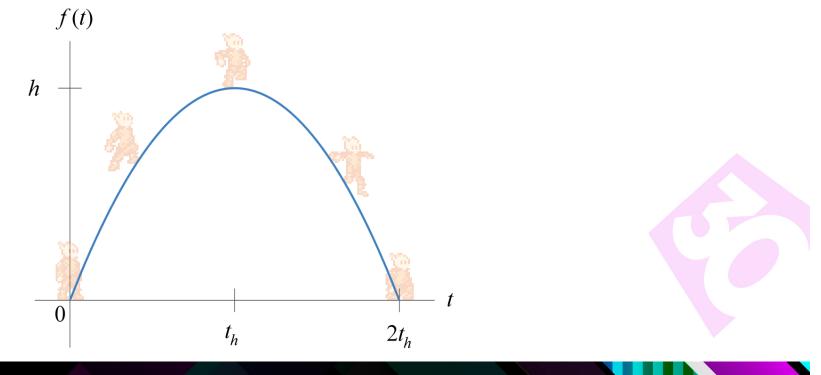
• Shaped by quadratic coefficient $a \rightarrow \frac{1}{2}g$

Design on paper



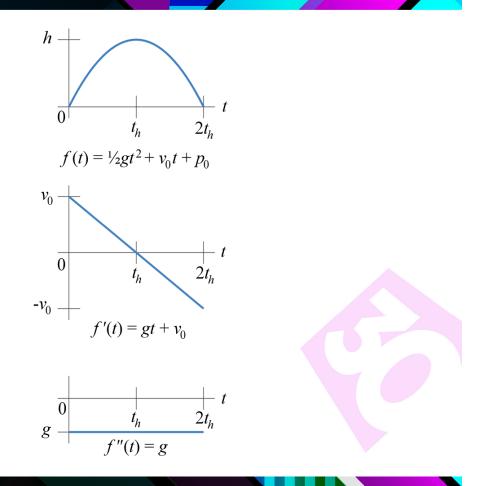
GDC GAME DEVELOPERS CONFERENCE March 14–18, 2016 · Expo: March 16–18, 2016 #GDC16

Design on paper



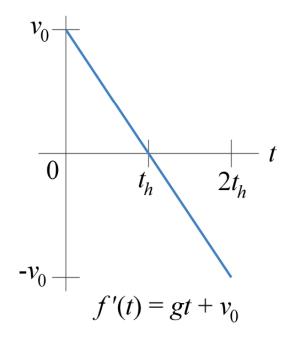
Maths

 Derive values for gravity and initial velocity in terms of peak height and duration to peak



GDC GAME DEVELOPERS CONFERENCE March 14-18, 2016 · Expo: March 16-18, 2016 #GDC16

Initial velocity



Solve for v_0 :

 $f'(t) = gt + v_0$ $f'(t_h) = 0$ $0 = gt_h + v_0$ $v_0 = -gt_h$

GDC[®]GAME DEVELOPERS CONFERENCE[®] March 14–18, 2016 • Expo: March 16–18, 2016 #GDC16

Gravity

 $h + \frac{1}{0} + \frac{1}{t_h} t$ $f(t) = \frac{1}{2}gt^2 + v_0t + p_0$

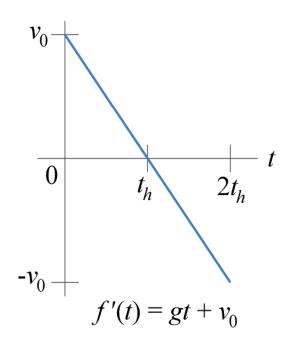
 $v_0 = -gt_h$ $p_0 = 0$

Solve for *g*:

 $f(t) = \frac{1}{2}gt^{2} + v_{0}t + p_{0}$ $f(t_{h}) = h$ $h = \frac{1}{2}gt_{h}^{2} + v_{0}t_{h} + p_{0}$ $h = \frac{1}{2}gt_{h}^{2} + (-gt_{h})t_{h} + 0$ $h = -\frac{1}{2}gt_{h}^{2}$ $g = \frac{-2h}{t_{h}^{2}}$

GDC GAME DEVELOPERS CONFERENCE March 14-18, 2016 Expo: March 16-18, 2016 #GDC16

Back to init. vel.

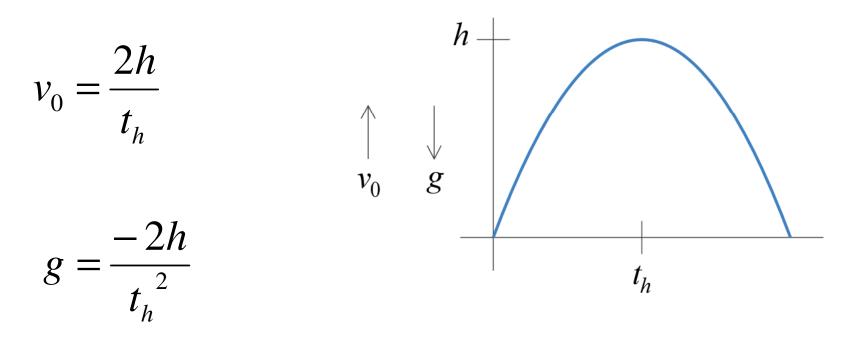


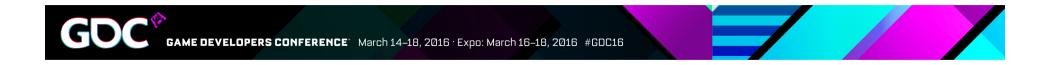
 $v_{0} = -gt_{h}$ $g = \frac{-2h}{t_{h}^{2}}$ $v_{0} = -(\frac{-2h}{t_{h}^{2}})t_{h}$ $v_{0} = \frac{2h}{t_{h}}$

Solve for v_0 :

GDC[®] GAME DEVELOPERS CONFERENCE[®] March 14–18, 2016 • Expo: March 16–18, 2016 #GDC16

Review

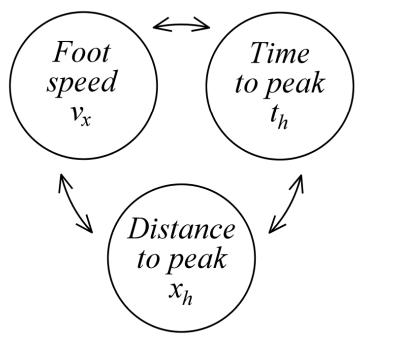




Time \rightarrow space

- Design with x-axis as distance in space
- Introduce lateral (foot) speed
- Keep horizontal and vertical velocity components separate

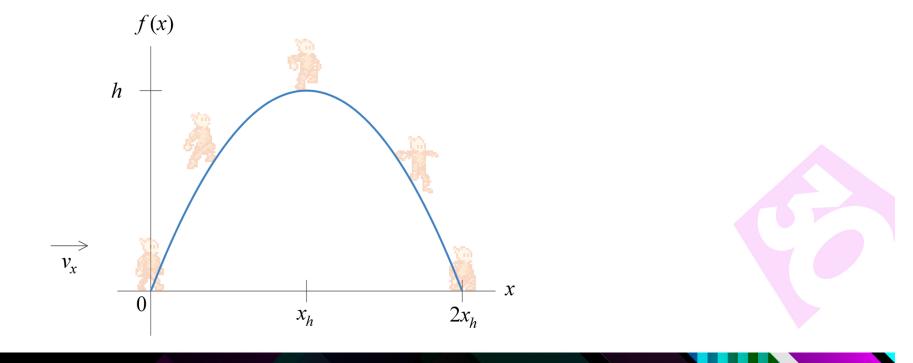
Parameters



Time \rightarrow space

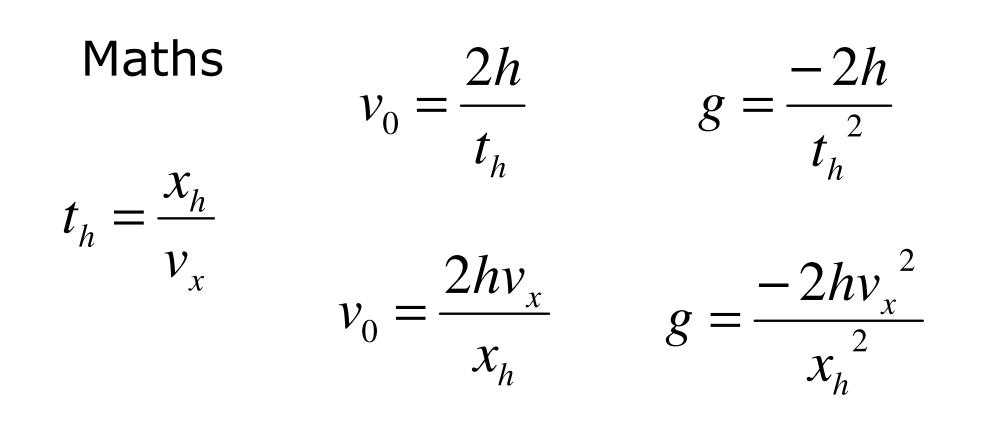
GDC[®] GAME DEVELOPERS CONFERENCE[®] March 14–18, 2016 • Expo: March 16–18, 2016 #GDC16

Time \rightarrow space



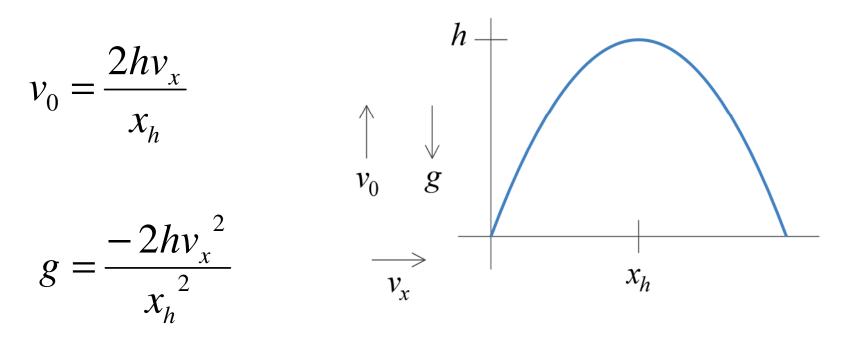
Maths

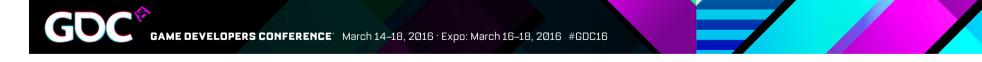
 Rewrite gravity and initial velocity in terms of foot speed and lateral distance to peak of jump GDC GAME DEVELOPERS CONFERENCE March 14-18, 2016 · Expo: March 16-18, 2016 #GDC16



GDC[©] GAME DEVELOPERS CONFERENCE[·] March 14–18, 2016 · Expo: March 16–18, 2016 #GDC16

Review





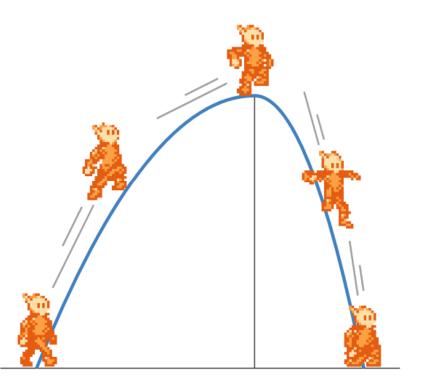
Breaking it down

- Real world: Projectiles always follow parabolic trajectories.
- Game world: We can break the rules in interesting ways.
- Break our path into a series of parabolic arcs of different shapes.

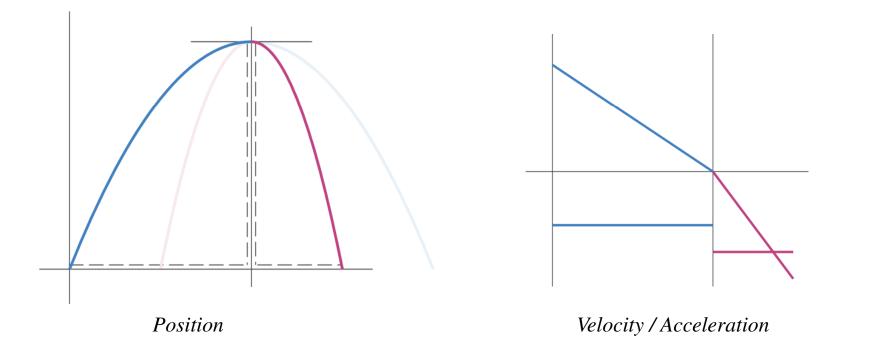


Breaks

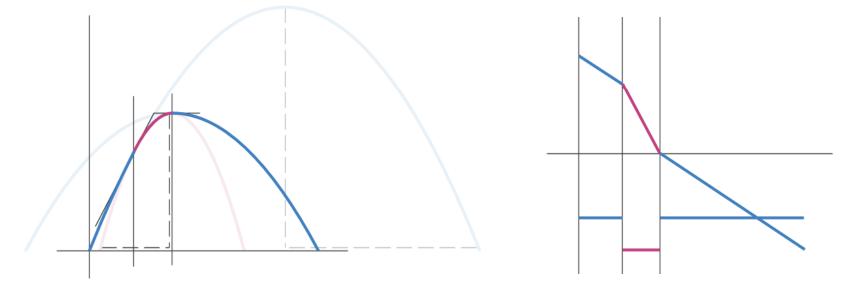
- Maintain continuity in position and velocity
 - Trivial in implementation
- Choose a new gravity to shape our jump



Fast falling



Variable height jumping



Position

Velocity / Acceleration

Double jumping

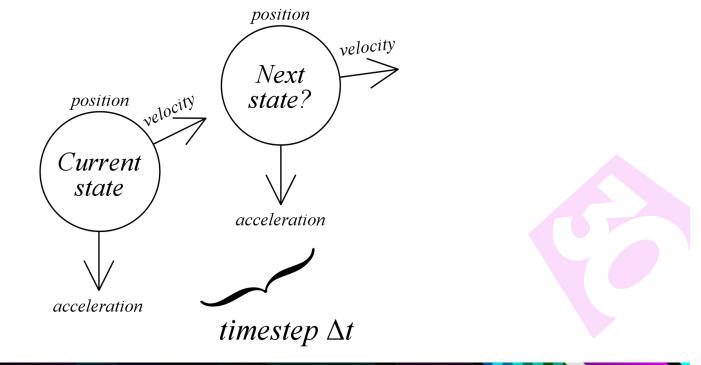


Integration

- Put our gravity and initial velocity constants to use in practice
- Integrate from a past state to a future state over a time step

GDC[©] GAME DEVELOPERS CONFERENCE[®] March 14–18, 2016 • Expo: March 16–18, 2016 #GDC16

Integration



GDC GAME DEVELOPERS CONFERENCE March 14-18, 2016 Expo: March 16-18, 2016 #GDC16

Euler

• Pseudocode

pos += vel * Δt vel += acc * Δt

- Easy
- Unstable
- We can do better

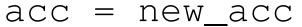
Runge-Kutta (RK4)

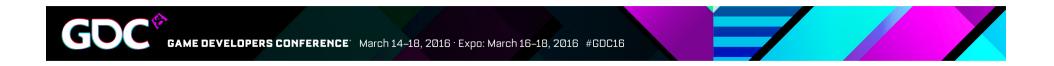
- The "top-shelf" integrator.
- No pseudocode here. :V
- Gaffer on Games: "Integration Basics"
- Too complex for our needs.

Velocity Verlet

Pseudocode

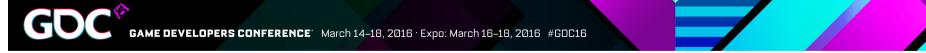
pos += vel* Δt + $\frac{1}{2}acc*\Delta t*\Delta t$ new_acc = f(pos) vel += $\frac{1}{2}(acc+new_acc)*\Delta t$



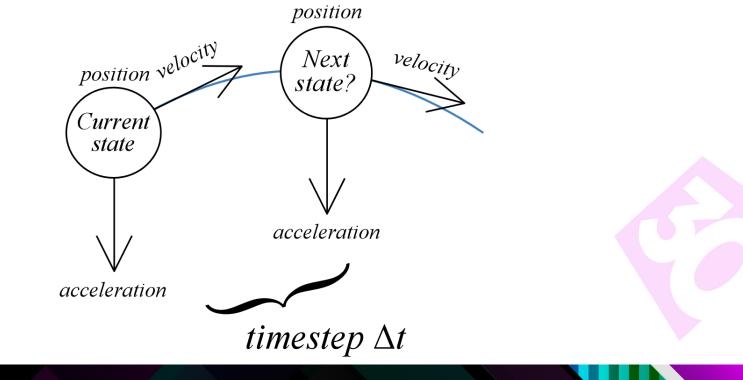


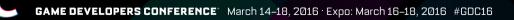
Observations

- Similarity to projectile motion formula
- What if our acceleration were constant?
- We could integrate with 100% accuracy



Assuming constant acceleration





Assuming constant acceleration

Pseudocode

pos += vel* Δt + ½acc* Δt * Δt vel += acc* Δt

- Trivially simple change from Euler
- 100% accurate as long as our acceleration is constant

Near-constant acceleration

- What if we don't change a thing?
- The error we accumulate when our acceleration does change (versus Velocity Verlet) will be:
 - Δacc * Δt * Δt
 - Acceptable?

The takeaway

- Design jump trajectories as a series of parabolic arcs
- Can author unique game feel
- Trust result to feel grounded in physical truths

Questions?

- In practice: You Have to Win the Game (free game PLAY IT PLAY MY THING)
- The Twitters: **@PirateHearts**
- http://minorkeygames.com
- http://gunmetalarcadia.com